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SUMMARY

Antimicrobia peptides are important in the innate immunity and de-
fence mechanisms of dl organisms. Severa models have been pro-
posed in order to explain their antibacterial mode of action. Most an-
timicrobia peptides are amphipatic and cationic, and thus an effect on
the cytoplasmic membrane of susceptible bacteria has been postulated
as the main mode of action. The peptides may either form a channel,
hereby inducing leakage of cytoplasmic content, or the peptide may in-
duce permeability changes in a detergent-like manner. Both modes of
action may lead to the death of the bacterid cell. Intracdlular targets
have also been identified for some antimicrobia peptides, and include
binding to macromolecules, inhibition of macromolecular biosynthesis,
and inhibition of bacterial enzymes. Some peptides have aso been
shown to have more than one target. This review addresses the models
describing the antibacterial mode of action of human defensins present
in the gut. In addition, the antibacterial mode of action of related an-
timicrobial peptidesis discussed.

INTRODUCTION

The microbia load in the intestines
of mammals is enormous (Moore and
Holdeman, 1974). Some of these mi-
crobes are involved in the digestion and
uptake of nutrients, and hence benefits
the host. The presence of pathogenic
bacteria may however not benefit the
host, and several mechanisms are in-
volved in the protection of the intestine
from these bacteria The mechanisms
include the presence of a norma bacte-
rial flora, volatile fatty acids, peristatic
movements, mucus, shedding of intes-
tinal cells, and the presence of secretory
IgA antibodies (Mahida et al., 1997,
Israel and Walker, 1988). In addition, a

rapid, non-oxidative, no-memory first-
line defence system, the innate immu-
nity system, involving peptides and
proteins with antimicrobia activity pro-
tect the host against possible pathogenic
bacteria. Such antimicrobia peptides are
present in the gastrointestina tract
across phyla. Magainins are found in
the stomach and intestine of the African
frog Xenopus laevis (Zasloff, 1992,
Reilly et al., 1994), and the midgut of
some insects contains cells that produce
antimicrobia peptides (Nicolas & al.,
1996). Cecropin P1, an antimicrobia
peptide related to the cecropins found in
insects, has been isolated from the por-
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cine proxima small intestine (Lee et al.,
1989).

In the human digestive tract, many
proteins and peptides with antimicrobid
activity are present (summarised by Le-
hrer, 2001). Some peptides are confined
to the epithelid cdls and protect them
from invasion by microbes (e.g. pB-
defensins, hCAP18/LL-37), thus cre-
ating a barrier against microbes. Others
enter the digestive system through sali-
vary glands (e.g. histatins), from the
Paneth cells in the small intestine (e.qg.
o-defensins), and from pancreas (e.g.
B-defensing). Further, some antimicro-
bia proteins and peptides, i.e. lactofer-
rin and lactoferricin, can enter the Gl-
tract either through food (Kuwata et al .,
1998, 2001) or from endogenous
sources (Kayazawa et al., 2002). An-
timicrobial peptides are also found in the
gut due to their presence in migrating
polymorphonuclear cells (Handy et al.,
1995).

The defensins

The defensins comprise the largest
group of mammalian peptides (Risso,
2000), and are present throughout the
digestivetract in dl mammals, including
humans (Table 1). There are two sub-
families of human defensins. (i) o-de-
fensins and (ii) p-defensins, differing
from each other in the position of the
cysteine residues and in the bridge for-
mation. The mature o-defensins com-
prises 29-35 amino acids (Lehrer et al.,
1993), and the p-defensins 34-42 resi-
dues (Selsted et a., 1993). In ther
mature form, al defensins share a
smilar structural conformation; they are
al p-sheets, cycled and stabilised by
three disul phide-bridges (Risso, 2000).

Antimicrobial
tivity
Although the antimicrobid peptides
in the Gl-tract possess several smilari-
ties, thelr antimicrobia properties are

spectrum and ac-
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digtinct (Tables 2, 3 and 4). Most pep-
tides are active againgt both Gram-
negative and Gram-positive bacteria,
some also against fungi and protozoa,
while others are also active against vi-
ruses and mycobacterium. The minima
inhibitory concentrations of the peptides
areinthe range of 0.1-100 ug/ml. They
show synergistic activity between them-
selves and with other host defence
molecules such as lactoferrin and
lysozyme (Bals et al., 1998a, 1998b;
Nagaoka et a, 2000; Sngh et al., 2000;
Garciaet a., 2001a).

Several inhibitors of antimicrobia
activity have been described and inhibi-
tion of activity by NaCl has been impli-
cated in cystic fibrosis (Smith & al.,
1996; Goldman et al., 1997). HBD-3 is
the only p-defensin that is salt-insensi-
tive (Harder et d., 2001). The inhibition
by NaCl is aso dependent on the
microbe, as high NaCl concentrations
inhibits the activity of HNP-1 against
Gram-positive and Gram-negative bac-
teria, but have no effect on the activity
of HNP-1 against mycobacterium or
Herpes smplex virus-1 (Daher et al.,
1986; Miyasaki et al., 1990; Ogata e
a., 1992; Miyakawa et al., 1996). For
LL-37, NaCl inhibits the activity against
methicillin resistant S. aureus, but does
not influence the activity against van-
comycin resistant Enterococcus faecium
(Turner et al., 1998). Divdent cations
such as Ca* and Mg*, serum and a-
bumin have aso been reported to inhibit
the activity of some peptides (see Tables
2, 3and 4).

The other Gl-tract peptides covered
inthis review, lactoferricin B, magainin
2, cecropin P1 and LL-37, also show a
broad spectrum of activity covering
Gram-positive and Gram-negative bac-
teria, fungi, viruses, and protozoa (Ta
ble 2). Among these peptides, lactofer-
ricin B is the only peptide with antivird
activity (Andersen et al., 2001).
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Gl-tract peptides are thus active
against a wide range of Gram-positive
and Gram-negative bacteria, as well as

fungi, protozoa, viruses, and myco-
bacterium.

DISCUSSION

Mode of action of antimicrobial
peptides

Due to the amphipatic, cationic
structure of most antimicrobial peptides,
an effect on the cytoplasmic membrane
of susceptible bacteria has been postu-
lated as the main mode of action (Ganz
and Lehrer, 1998). After an initid inter-
action between peptide and bacterial cdl
surface, the peptide will traverse to the
outer leaflet of the cytoplasmic mem-
brane and cause an increased perme-
ability, which eventualy leads to cdl
death.

In Gram-negative bacteria, the anti-
bacteria peptides are thought to cross
the outer membrane through a mecha
nism caled “salf-promoted-uptake”
(Hancock and Bell, 1988). Divdent
cations in the LPS are replaced by the
peptide, causing an increased perme-
ability of the outer membrane, which
allows more peptide molecules to cross
the outer barrier. For Gram-postive
bacteria, the initial interaction is shown
to be with the (L)TA (Vorland et al.,
1999), yet there are no good explanation
for the subsequent crossing of the thick
peptidoglycan layer present in Gram-
positive organisms.

Several models have been proposed
in order to explain the effect antimicro-
bial peptides have on the cytoplasmic
membrane (Table 5). In genera, the
peptides may act by destabilisng and
hereby permeabilising the membrane, or
by forming distinct pores/channels in
the membrane. For the former effect,
the most known models include the
formation of a peptide carpet (Gazt &
al., 1995) and thinning of the membrane
(Ludtke et al., 1995; Berneche et al.,
1998; Heller et al., 2000). For pore-

forming peptides, the models include
the barrel-stave modd (Shai, 1999,
Bechinger, 1999), the wormhole model
(Matsuzaki et al., 1996; Ludtke et al.,
1996), and the two-state model (Huang,
2000). Dependent upon the character of
the pore, the formation of pores may
lead to leskage of ions and cytoplasmic
content, influx of water, or both.

Despite the focus on bacterial mem-
branes as targets for antimicrobia pep-
tides, severa antimicrobial peptides
have been shown to have intracelular
targets. These include binding to DNA,
RNA and/or proteins (Park et al., 1998;
Otvos et a., 2000; Kragol et al., 2001),
inhibition of macromolecular biosynthe-
sis (Boman et al., 1993; Subbalakshmi
and Staram, 1998; Cadtle et al., 1999;
Patrzykat et al., 2002) and inhibition of
bacterid enzymes (Nishikata et al.,
1991; Couto et al., 1993; Andreu and
Rivas, 1998).

Mode of action of defensins
Severd lines of evidence argue for a
hypothesis involving the cytoplasmic
membrane as the bactericidal target for
defensins:
(i) Defensins (HNP-1) sequentialy
permegbilise the outer and inner
membrane of E. coli (Lehrer et al.,
1989),
Defensins (HNP-1) form voltage-
dependent channels in artificia
membranes (Kagan et al., 1990),
Defensins induce leskage of cyto-
plasmic content (Lehrer e al.,
1989; Cociancich et al., 1993),
Defensins induce leskage of vesicle
content from negatively charged
liposomes (Wimley et al., 1994),

(i1)

(iii)

(iv)
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(v) Defensins (HNP 1-3) are active
against enveloped viruses, but not
against non-enveloped viruses (Da-
her et al., 1986),

(vi) Theeffect of defensins is abolished
by membrane-depolarising agents
(Lehrer et al., 1988), and

(vii) Metabalicaly active microbes are
more susceptible to human o-de-
fensins than resting microbes (Le-
hrer et a., 1989).

However, NMR studies have shown

that it is not possible to use the same

model to describe the mode of action for

al defensins (Hoover e al., 2001).

HNP-3 dimers cannot be modelled us-

ing HBD-2 monomers, and HBD-1

monomers cannot be arranged into

HBD-2 or HNP-3 type dimers. Hence,

the exact mechanism of dl defensins is

not known, and there are currently two
model s describing the mode of action of
defensins. One model describes the
formation of multimeric pores in the
cytoplasmic membrane (Wimley et al.,

1994), and the other involves non-spe-

cific electrogtatic interactions between

negatively charged moieties in the
membranes and the positive charges of
the side chains of defensin molecules

(Hill et a., 1991). Both mechanisms

may lead to permeability changes, cdl

rupture/lysis and death.

The multimeric pore

Wimley et al. (1994) have published
the results of an extensive study per-
formed on HNP-2. HNP-2 binds to
negatively charged vesicles through
electrogtatic interactions, induce fusion
of the outer monolayer of vesicles, and
cause leakage of vesicle content through
pores with a maximum diameter of ap-
proximately 25 A. The authors further
present a multimeric model of such a
pore made from HNP-2 molecules,
based upon the crystal structure of de-
fensins showing dimers with the form

of abasket (Hill et al., 1991). This bas-
ket has a hydrophobic bottom and a
polar top. The modd pore is composed
of 6 defensin dimers arranged with the
polar basket tops lining a ~20 A pore.
The hydrophobic basket bottom face
outwards towards the bilayer of the
membrane. This channe alows the
leakage of rather large molecules (up to
~4,400 Da).

Non-specific eectrostatic interactions

Aley et al. (1994) reports of cdl ag-
gregation and dramatic changes in mor-
phology of Giardia lamblia trophozoites
after exposure to HNP-1. The mode of
action was interpreted to involve bind-
ing and lysis, an event that appeared to
involve charge interactions. Further, the
high-resolution crysta  structure  of
HBD-2 show that peptide monomers are
capable of forming an octameric
structure with a uniform pogtively
charged outer surface (Hoover e al.,
2000). However, the structural and
electrostatic properties of the HBD-2
octamer support an electrostatic charge-
based mechanism of membrane perme-
abilisation by beta-defensins, rather than
a mechanism based on formation of
bilayer-spanning pores.

Electrostatic interactions may lead to
cell death through a detergent like effect,
where the formation of a carpet of
peptide molecules in the membrane re-
sultsin membrane disruption at a critica
ratio of lipid:peptide (Shai, 1999). The
interactions may also cause separation
of the polar lipid head groups of the
phospholipids in the cytoplasmic mem-
brane, as they are pushed aside by the
hydrophobic residues of the membrane
associated peptide molecules (Ludtke e
a., 1995). As a result, gaps will be
formed between the head groups, in-
ducing physical stress on the bacterid
cytoplasmic membrane, and result in the
collapse of the membrane.
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Figure 1: Electron micrographs of bacteria exposed to antimicrobial peptides, immunolabelled
with polyclonal antibodies towards the respective peptide, and further visualised with gold-marked
protein A. Panel A; Negative control (E. coli not exposed to any peptide). Panel B; E. coli ex-
posed to magainin 2 for 30 minutes. Panel C; S. aureus exposed to lactoferricin B for one hour.
Panel D; E. coli exposed to cecropin P1 for 30 minutes. The micrographs have previously been

published by Haukland et al. (2001).

Targets other than the membrane

The idea of antimicrobia peptides as
multi-target substances is growing. Re-
sults involving other effects than those
of the cytoplasmic membrane have been
published. For example, in addition to
its permeabilising effects, HNP-1 also
causes a reduction in bacterial macro-
molecular biosynthesisand adrop in the
colony count (Lehrer et al., 1989).
Further, the magainins have been exten-
sively studied as pore-forming peptides
(Matsuzaki, 1998), and severa models
have been used to explain the interaction
between magainin and the cytoplasmic
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membrane (see Table 5). Despite these
effects, Haukland et al. (2001) have
shown that magainin 2 are capable of
residing in the bacteria cytoplasm (Fig-
ure 1b). Cecropin P1 does not exhibit
this feature, and are confined to the
bacteria cdl wal (Figure 1d), consis-
tent with the carpet model proposed for
the mode of action of this peptide (Gazt
et a., 1995).

While proposing the modd of the
multimeric pore, Wimley et al. (1994)
also points out that the actua in vivo
mechanism for cell leakage may involve



a least three steps. These included the
initial interaction of monomeric defens-
insand cdl surface through eectrostatic
interactions, the oligomerisation of de-
fensins, and a last pore formation.
Trandocation of the peptide via pore
formation is possible as a fourth step,
allowing the peptide to interfere with
any intracellular process.

Evidence for the trandocation of
several antimicrobia peptides are accu-
mulating, and involve maganin 2
(Haukland et al., 2001), lactoferricin B
(Haukland et al., 2001), and buforin
(Park et al., 1998). For defensins,
Sharma and Khuller (2001) showed that
HNP-1 isan efficient inhibitor of DNA-
synthesis in Mycobacterium tuberculo-
sis. They suggest that the cytoplasmic
membrane is the primary target for
HNP-1. Binding to this target causes
permeabilisng of the membrane, and
thus enhanced access to the secondary,
intracellular target.

Lichtenstein (1991) has also made

the proposal of two targets for defens-
ins. Working on tumour cells, they re-
port that initia effects on the plasma
membrane were not sufficient for sub-
sequent lysis. A second phase was re-
quired which involved the continued
presence of defensin. They conclude
that there is two phases of interaction
between defensins and tumour cells,
where the initial effect is on the cdl
membrane, and the second phase is me-
diated intracellularly by defensin inter-
nalised through a permeabilised mem-
brane. A two-phased bactericidd activ-
ity is aso proposed for HBD-2 and E.
coli (Tomita et a., 2000). Lactoferricin
B adso interacts with membranes (Ul-
vatne et al. 2001), and can be traced into
the cytoplasm a  sub-inhibitory
concentrations (Figure 1c) (Haukland &
a., 2001). Unpublished results show
that lactoferricin B have an effect of
macromolecular biosynthesis (Ulvatne
etal., inprep.).

CONCLUSION

At this point, there is no doubt that
most antimicrobia peptides, including
the defensins, are membrane active
molecules. Through ther interaction
with the cytoplasmic membrane, they
may cause severe damage to the bacte-
ria cel and cdl death. It is likely that
bacteria may compensate for the forma
tion of pores/channels in the mem-
branes, while a detergent like effect is
irreversible since it involves a complete
rupture of the bacteriad integrity. The
bacteria cell isnot a closed system, and
the cdl is in some kind of equilibrium
with its surroundings through sensing
systems. Transport of nutrients, waste
products, and other extracellular prod-
ucts are constantly crossing the cyto-
plasmic membrane, and some of this
transport happens through pores. An

efficient killing by pores must therefore
be swift, rapid and sudden, to ensure
that the bacteria do not initiate a defence
response. Antimicrobia peptides may,
by utilising another secondary target, be
even more efficient in the battle against
pathogenic bacteria.

Due to the fact that most antimicro-
bial peptides also exhibit other effects,
thein vivo effect and exact mode of ac-
tion of antimicrobial peptides are hard to
elucidate (Scott and Hancock, 2000).
The other effects involve interactions
with host cells to stimulate gene-expres-
sion from genes encoding transcription
factors, chemokines, chemokine recep-
tors, integrins etc, products that also are
pat of the innate immunity (Hancock
and Rozek, 2002). Antimicrobid pep-
tides are therefore multi-functioning ef-
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fector molecules involved in the delicate
bal ance between microbes and host, and
thelr in vivo role must be regarded as
the whole interplay between the differ-
ent functions the peptides may have.

Therefore, further studies on defensins
and other antimicrobia peptides must be
performed in order to understand the in
vivo antibacterial mode of action.
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