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P.O. Box 800, 9700 AV Groningen, The Netherlands

SUMMARY

Theoretical and experimental studies of various biomedical systems,
including heart, brain, immune system, and many ecosystems, have
shown that many of these systems may be described in terms of non-
linear dynamics. Two important consequences of this non-linear dy-
namical behaviour are irreversibility and unpredictability, due to the
chaotic behaviour this type of system may exhibit. Another trend in
modern science (often named "the sciences of complexity") deals with
the often complex or chaotic collective behaviour of systems made up
of large numbers of relatively simple entities. Very often such systems
exhibit non-linear dynamical behaviour. Many such complex and non-
linear systems have been studied successfully using computer simula-
tion techniques.

It is proposed that, as has been demonstrated for the immune sys-
tem, the intestinal microbial ecosystem may he viewed as such a com-
plex system governed by non-linear dynamical equations. A discussion
of techniques available for the study of such systems is given, with a
special emphasis on computer simulation. Finally, the results of a pilot
study using computer simulation of the interaction between the anaero-
bic and aerobic compartments of the microflora within a simple geo-
metric model of the small and large intestine are presented.

INTRODUCTION

In recent years there has been a great
deal of interest (and indeed a great deal
of hype) concerning three catch-phrases:
non-linear dynamics, chaos, and
complexity. This interest (and hype) has
led to a large number of popular-science
articles decorated with very fancy
graphics (fractals and the like).
Naturally, a sceptical backlash from
certain serious scientists (Horgan,
1995) has occurred. Some scepticism is

of course always in place when a group
of scientists claims to have opened up a
new field of study which will (a) revo-
lutionise science, and (b) explain vir-
tually anything under the sun and be-
yond. Some scientists working in the
fields of non-linear dynamics and com-
plexity have indeed made such claims.
Such claims abound throughout the
history of modern science from Newton
down to the present day (see Prirogine
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and Stengers, 1984). Each time some 
breakthrough was reached, far-fetched 
claims about the general applicability of 
the new theory or model cropped up. 
Similarly, objections by serious scien­
tists against such claims have been 
heard as often as the claims themselves. 
Even the critics must however concede 
that non-linear dynamics, chaos theory 
and studies of complex systems have 
been making solid contributions to 
fields of physics (e.g. Ott et al., 1994), 
meteorology (e.g. Lorenz, 1963), and 
ecology (Bulmer, 1994; Lindgren and 
Nordahl, 1994) to name but a few. 

Leaving aside both the exaggerated 
claims and the often acrimonious re­
sponses, the aim of this paper is to ex­
plore the possible implications which 
techniques and insights gleaned from 
non-linear dynamics, chaos theory and 
studies of complex systems may have 
for the study of the intestinal microbial 
ecosystem and its interaction with the 
host. To achieve this, the meaning of 
the phrases "non-linear", "chaos" and 
"complex" within this context will be 
defined. The discussion of these topics 
is presented without any attempt at 
mathematical rigour. Those interested in 
a more rigorous discussion are referred 
to Ott et al. (1994), or for the more 
philosophically minded Prirogine and 
Stengers (1984) and Kauffman (1995). 
It will then be shown that both the mi­
crobial ecosystem and the host's im­
mune and digestive system all meet the 

necessary conditions to be called com­
plex non-linear dynamical systems. The 
types of behaviour which such systems 
may exhibit and the means to study 
them are explored. Two approaches to 
study the intestinal microflora and its 
interaction with the host follow naturally 
from this discussion: (i) computer 
simulation of the system, and (ii) time 
series analysis of series of measure­
ments to measure degrees of chaos and 
(un)predictability. There have been 
some attempts at the first approach al­
ready, notably by Freter et al. (1983), 
who made a mathematical model of the 
competition for food substrate and 
binding sites in a continuous flow 
model of the intestine. Many other types 
of interactions (both antagonistic and 
mutualistic) exist within the intestinal 
microflora, and it should be possible to 
model many of these. In this paper a 
pilot study, using computer simulation 
of the interaction between the aerobic 
and anaerobic compartments of the mi­
croflora, is presented. This simulation 
lends further support to the idea that a 
qualitative and quantitative theoretical 
understanding of a number of features 
of the intestinal microflora can be ob­
tained through computer simulation. Fi­
nally, an outline of a research pro­
gramme to explore the interaction be­
tween microflora and host with tech­
niques from non-linear dynamics and 
complexity studies is sketched. 

THEORY
 

What are non-linear dynamical 
systems? 

Probably the most important contri­
bution of Newton and Leibnitz to sci­
ence is the introduction of the concept of 
dynamical systems. In physics almost 
any system under study, whether 
planetary orbits, semiconductor elec­

tronics, or the Earth's atmosphere, may 
be considered a dynamical system. A 
dynamical system is a simply system 
which can be characterised by (a) a set 
of parameters the values of which define 
its state at a given point in time, and (b) 
a set of mathematically specified rules 
defining the change of state of the 
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system in time. These rules are gener­
ally specified as differential equations, 
defining the rate of change of each of 
the parameters describing the system, as 
a function of the current state of the 
system. 

This definition is very broad indeed, 
and many systems in biology, medicine, 
economics and the social sciences may 
be described and studied as dynamical 
systems (e.g. Prirogine and Stengers, 
l984; Kauffman, 1994). A well known 
example of this is the Lotka-Volterra 
predator-prey model ecosystem. The set 
of numbers describing this systems 
consists of (i) the number of predators, 
and (ii) the number of prey. The rules 
specify that the number of prey increase 
at a rate proportional to the number 
present (exponential growth) in the 
absence of predators. When predators 
are present the number of prey caught, 
which is proportional to both the 
number of predators and the number of 
prey, must be subtracted. The predators 
starve in the absence of prey 
(exponential decay) and grow 
proportionally to the number of prey 
caught (again proportional to the 
product of prey and predator numbers). 
This system may show damped, un­
damped and increasing predator-prey 
oscillations. By specifying the initial 
conditions (e.g. from observation) and 
solving the differential equations in­
volved, it is in principle possible to 
model or predict the future behaviour of 
the ecosystem. 

The sequence of states the system 
passes through in time is called its orbit. 
If the system is dissipative, i.e. it loses 
energy in some way (and most systems 
do), the orbits converge to one of a 
small subset of all possible states called 
an attractor. The simplest kind of attrac­
tor is a single point: the system becomes 
stationary. The system is said to be at 
rest or in dynamical equilibrium. An­
other type of attractor is called a limit 

cycle: the system oscillates at a stable 
frequency and amplitude. A system may 
have numerous attractors, and the initial 
conditions determine to which attractor 
the system will converge. The set of 
initial states for which the system con­
verges to a particular attractor is called 
the basin of attraction of that attractor. 
The Lotka-Volterra type ecosystem may 
have either a point attractor, i.e. the 
populations become stable, or a limit 
cycle attractor, i.e. predator-prey oscil­
lations remain stable (e.g. Bulmer, 
1994, pp. 39-45). 

Depending on the kind of rules 
specified, dynamical systems are either 
linear or non-linear. In a linear dynami­
cal system the differential equations are 
linear, which means that the effects of 
changes in the state of the system are 
additive and proportional to the magni­
tude of the changes. The result of 
changing multiple parameters simulta­
neously is simply a superposition of the 
change in each individual parameter. 
The additive nature of changes to the 
system means that different parameters 
of the system may each be studied sepa­
rately. Furthermore, the linear nature of 
the of the equations ensures that, given 
an initial condition, the orbit of the sys­
tem is uniquely defined. This means the 
system is time-reversible and pre­
dictable: past and future may be deduced 
with arbitrary precision from the present 
state. Furthermore, the attractors are 
guaranteed to be simple, and the 
equations can be solved quite readily 
(even with paper and pencil in small 
systems). 

Because of all these features, linear 
systems have been studied most. Before 
the advent of electronic computers, 
mathematical simplicity was one over­
riding reason to study linear systems, 
but a more subtle reason may have been 
equally important (Prirogine and 
Stengers, 1984). The uniqueness of the 
orbit lent credibility to the idea of a 
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Figure 1: An example of the fractal shape of a strange attractor, the Lorenz-attractor, which may 
(roughly) he considered as consisting of an infinite set of different oscillations which the system 
may go through. 

Cartesian, clockwork universe. All 
conditions were set at the time of cre­
ation, and the clockwork mechanism of 
Newtonian mechanics would automati­
cally see to the rest. Unique orbits also 
provide complete determinism, which is 
not guaranteed to exist for non-linear 
dynamical systems. Besides, it was 
(and is) argued that many non-linear 
systems (such as the simple pendulum) 
can be approximated by linear systems 
to such a degree that there is no need to 
solve the more complicated non-linear 
form. 

By contrast, in non-linear systems, 
changes in multiple parameter need 
neither be additive, nor proportional to 
the magnitude of the changes. The ef­
fects of changing individual parameters 
cannot in general be studied separately 
as in the linear case. Furthermore, the 
orbit of a system need not be unique for 
a given initial condition. In such cases 
bifurcations occur: places in the orbit 

were two possible future paths are open 
to the system, and no deterministic 
means exists to choose between the two 
paths. An element of randomness creeps 
back into the mechanics (Prirogine and 
Stengers, 1984). 

In many non-linear systems with 
more than three parameters which can 
be set freely (or degrees of freedom), an 
effect called chaos may occur. Probably 
the most famous example of chaos has 
been found in meteorology, where 
Lorenz (1963) has shown that determin­
istic, but highly irregular flow patterns 
exist within weather systems. When 
chaos occurs the attractor cannot be de­
scribed by simple forms such as limit 
cycles, straight lines or points; the at­
tractor has a fractal shape (Figure 1). A 
fractal shape shows detail at every pos­
sible magnification. Attractors with this 
peculiar property are usually called 
strange attractors. These attractors can 
be thought of as (roughly) the union of 
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Figure 2: A simple system showing chaos (after Moon and Holmes, 1979): (A) diagram of appa­
ratus, showing a steel spring suspended between two magnets; the top of the spring is forced to 
oscillate sinusoidally, (B) the graph shows the chaotic motion of the lower end of the spring . 

an infinite collection of limit cycles, 
with the system switching very rapidly 
between them. The corresponding mo­
tion (or orbit) may appear to be random 
and look something like Figure 2, 
which shows the motion of a simple 
spring and magnet system (Moon and 
Holmes, 1979). The base of the spring 
is forced to oscillate at some frequency 
ω . The displacement of the end of the 
spring as a result of all forces is highly 
irregular, and yet it is not noise. The 
system is still deterministic. In fact, 
Figure 2B is not a series of measure­

ments, but the result of a computer 
simulation using the set differential 
equations describing the system, so it 
cannot contain truly random noise. This 
type of seemingly random, yet fully 
deterministic behaviour is one of the 
hallmarks of chaos. 

Another hallmark is the so called 
"butterfly effect": Change the initial 
conditions of wind speed in the global 
weather by an amount corresponding to 
the beat of a wing of a butterfly in 
Peking, and the path of a Caribbean 
hurricane is altered, because the change 
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introduced increases exponentially. In 
chaotic systems, infinitesimal changes 
in initial conditions propagate exponen­
tially in time, resulting in drastically dif­
ferent outcomes from infinitesimally 
different initial conditions. This means 
that future and past cannot be deduced 
with arbitrary precision or for arbitrary 
periods in time from measured data, 
which always contain some finite error. 
It is possible to determine a degree of 
chaos: the Lyapunov exponent. This is a 
number which determines the doubling 
rate of the error in the prediction. If it is 
low the system is not very chaotic, and 
medium to long term predictions remain 
accurate over considerable periods of 
time. If it is high, errors increase 
rapidly, and only very short term 
prediction is possible. Other measures 
of degree of chaos exist, most notably 
the fractal dimension of the attractor, 
which is a measure of the complexity of 
the shape of the attractor. The more 
complicated the attractor, the higher the 
degree of chaos. 

Can microbial ecosystems be de ­
scribed as non-linear dynamical 
systems? 

Growth of bacteria, either single 
species (Monod, 1950), mixed cultures 
(Gerritse et al., 1992), or complete 
ecosystems (de Wit et al., 1995) can be 
described in terms of dynamical sys­
tems. The key feature of the dynamics 
of these systems is that they show auto­
catalytic or inhibitory loops: the pres­
ence of a bacterium is needed to make 
more of that kind bacterium (obvious­
ly). Furthermore, species A may inhibit 
species B by secretion of toxins. 
Species A might also enhance growth 
by production of metabolites which 
serve as food for B, or may remove 
substances toxic to B form the ecosys­
tem. In systems which are far from 
thermodynamical equilibrium, such au­
tocatalytic and inhibitory loops produce 

just the type of non-linear dynamics 
which can produce highly complicated 
and chaotic behaviour (Prirogine and 
Stengers, 1984). In practice, all 
ecosystems are far from thermodynami­
cal equilibrium, since large fluxes of 
energy or food pass through them; only 
death (a point attractor of any ecosys­
tem) corresponds to thermodynamical 
equilibrium. 
For these reasons it may be assumed 
that techniques for analysis and mod­
elling of non-linear dynamical systems 
in general are appropriate tools for the 
study of bacterial ecosystems, including 
the gut microflora. 

Chaos and control systems 
As odd as it may seem, the presence 

of chaos may be an advantage in control 
systems, if rapid responses are re­
quired. Chaotic systems would seem to 
be utterly unreliable, given their extreme 
sensitivity to initial conditions. Yet, as, 
e.g., Ott et al. (1990) have noted, that 
same sensitivity allows a control mech­
anism to control the system with very 
small corrective signals, provided the 
developing chaos can be analysed 
rapidly, i.e. proper feedback is avail­
able. Very small adjustments have large 
effects. 

This may be of particular importance 
to biological control systems. Changing 
the mode of operation of, e.g. heart, 
nervous system or immune system 
rapidly, and without the expenditure of 
large amounts of energy is literally of 
vital importance to practically any or­
ganism. The constant feedback and 
small corrective steps to keep a such 
systems in the correct mode are proba­
bly not such a drawback, since the ex­
penditure of energy can be small for 
chaotic systems. Chaotic dynamics have 
indeed been observed in, e.g., heart rate 
variations (Goldberger et al., l984), 
though there is still some debate about 
the significance and meaning of these 
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findings (Kaplan and Talajic, l991). It 
has been observed that a reduction in 
variability (and possibly chaos) of heart 
rate may indicate heart disease (Kaplan 
et al., 1991; Skinner et al., 1991). On 
the other hand, fibrillations seem to be 
highly chaotic in nature, with high 
fractal dimension (Garfinkel et al., 
1992). Too much chaos is uncontrol­
lable. 

It has also been claimed that chaos is 
present in electroencephalograms 
(EEG). Here too, there is quite a lively 
debate about the reality and relevance of 
chaos (Bullock et al., 1995; Pritchard et 
al., 1995). Nonetheless, the fractal di­
mension of the attractor has been used 
as a measure of complexity of the EEG 
patterns. Stam et al. (1994) found that 
normal controls had significantly 
(p<0.001) more complex EEG patterns 
than patients with Parkinson's disease. 
Theirs in turn was significantly 
(p<0.001) more complex than EEGs of 
patients with Alzheimer's disease. 

What are complex systems? 
The "Sciences of Complexity" deal 

with systems which may show compli­
cated behaviour, stemming from the be­
haviour of a large number of entities 
which themselves show a simple be­
haviour. The complexity does not stem 
from complex rules, but rather from the 
large number of entities or subsystems 
the system is made of. An objection 
which has been raised is that the term 
complexity has not been defined particu­
larly strictly (Horgan, 1995). Indeed a 
number of (more or less conflicting) 
definitions have been given, yet these 
definitions are mainly aimed at mea­
surement of complexity, i.e. assigning a 
number to it. Whatever the conflict 
about how to measure complexity, the 
basic premise that complex systems are 
systems which are made up of large 
numbers of simpler objects is agreed on 
by all those working in the field. Any 

ecosystem can of course be considered 
as such a system, being built up of large 
numbers of individual organisms, each 
of which may show a far simpler be­
haviour than the whole system. Simi­
larly, the immune system may also be 
considered to be a complex system in 
this sense, since it is comprised of many 
cells which themselves exhibit rather 
simpler behaviour than the whole. 

Having said this, what can actually 
be gained by calling ecosystems or the 
immune system "complex"? Do com­
plex systems share certain properties 
which may be exploited to give extra 
insight into the behaviour of, e.g., the 
gut microflora and its interaction with 
the immune system? Several studies 
indicate that such common properties do 
exist (Langton, 1989; 1992; Kauffman, 
1995). The most important feature is 
probably that such systems show 
global, co-ordinated behaviour, without 
the presence of any distinct "global 
controller": self-organisation. Though 
an ecosystem might show Lotka-
Volterra type predator-prey oscillations, 
there is no external driving force which 
creates this; no "invisible hand". Simi­
larly, the immune system has no "chief 
lymphocyte" which directs an immune 
response, neither has the brain a "chief 
neurone" in which central control of all 
behaviour is located. The behaviour of 
all such systems is collective, but not 
under any "Stalinist" rule, nor need any 
of the entities involved be aware of the 
nature of the collective behaviour. Sec­
ondly almost all such systems are non­
linear system: given the large number of 
interactions in such systems, some are 
bound to non-linear. Given that, and the 
large number of entities (and therefore 
degrees of freedom), such systems are 
almost certain to show chaotic be­
haviour under a wide range of condi­
tions. 

Complex systems may show roughly 
four types of behaviour (Langton, 
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1989, 1992): (i) steady state, (ii) peri­
odic, (iii) "complex", and (iv) highly 
chaotic. Steady state is the simplest: the 
system is frozen into a particular state. 
Though there may be some initial oscil­
lations, these die out and the system 
settles down into its final state. There is 
a gradual transition into the periodic 
regime: initial oscillations persisting for 
longer and longer times until they be­
come effectively infinite. Even though 
the system is oscillating, the spatio­
temporal structure may be thought of as 
fixed, non-adaptive. Both the steady 
state and periodic classes of behaviour 
may be thought of as solid. Conversely, 
in the highly chaotic regime, no oscilla­
tions persist, and no structure is appar­
ent at all. Though determinism might be 
present, the degree of chaos is so high it 
is indistinguishable from stochastic be­
haviour. The system might be thought 
of as being in a gaseous phases. As 
such, the system is not adaptive either, 
it is just a constant mess. 

The most interesting behaviour is 
seen at the borderline between order and 
chaos, which might be thought of as a 
phase-transition between the solid and 
the gaseous phase. At this borderline, 
periodic oscillations may persist for 
long periods of time, or may vanish al­
most instantly. Definite structures may 
propagate through space and time, and 
produce complex interactions where 
they meet. It has also been shown that 
such systems, balanced on the "edge of 
chaos" can perform computing tasks: 
manipulation, storage and transmission 
of data. On the edge of chaos they are 
neither so rigid that manipulation or 
transmission is impossible, nor so 
chaotic that stored and transmitted data 
are scrambled. The systems can become 
truly adaptive. It is an attractive, but as 
yet unproven conjecture of many work­
ers in this field that all living systems 
(single organisms and ecosystems alike) 

are balanced on the edge between 
order and chaos, since it is only on this 
edge that sufficient order is present for 
homeostasis, along with sufficient 
chaos for adaptive behaviour (Langton, 
1992). There is a number of theoretical 
studies which suggest that evolution in­
deed drives the evolving entities to this 
edge (Kauffman and Johnsen, 1992; 
Kaneko and Suzuki, 1994). 

Self organised criticality and 
power-law spectra in complex 
systems 

It has been claimed that complex 
systems may show what has been called 
"self-organised criticality": a situation in 
which the slightest disturbance may 
cause either large or small cascades of 
events. The classical example of this is a 
large pile of sand, each grain on the 
surface of which is just held in place. 
Toss an extra grain of sand on the pile 
and you may see anything may happen 
from just a trickle to a huge avalanche 
(Bak et al., 1988). Similarly, in an 
ecosystem, the introduction of a new 
species (or a mutation in an existing 
one) may cause mass extinction or no 
effect whatsoever. In fact, if many 
species are present in the ecosystem, it 
becomes very hard to introduce new 
species. Usually, they fail to colonise. 
Occasionally however an intruder may 
wipe practically all others. 

According to Bak et al. (1988), self­
organised, critical systems may show 
shifts in behaviour at all scales, but not 
all magnitudes of shifts are equally 
likely. Small changes (small trickles) are 
more likely than large ones 
(avalanches). The likelihood (p) that a 
shift of a given magnitude (A) occurs is 
given by a power law:

 p(A) ∝ A-v (1) 

This equation implies two things: (i) 
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catastrophes cannot be prevented in 
such a system, and (ii) the rate of occur­
rence of catastrophes at given magni­
tudes can be predicted from small scale 
events. This power law is seen by some 
as a hallmark of self-organised criticality 
(Bak et al., 1988), others claim such 
systems do not actually show a power 
law (Horgan, 1995), but that very large 
scale events occur at lower rates than 
predicted by equation (1). Whatever the 
final outcome of that discussion, if 
some law may be postulated which, like 
equation (1), can predict the frequency 
of occurrence of large magnitude shifts 
in a dynamic system from the rate of 
occurrence of small magnitude events, 
this may become a diagnostic tool. If 
certain large scale shifts in the microbial 
ecology of the intestine are associated 
with disease, their rate of occurrence 
might be predictable from the normal, 
non-pathological population dynamics. 
If this is the case, modulating the dy­
namical behaviour of the flora, rather 
than its mean composition might be­
come a goal of therapy. At this point in 
time, this idea is still very much specu­
lation, yet there are ways to verify it. If 
we can determine the short to medium 
term (and therefore small to medium 
scale) fluctuations in the gut microflora 
of healthy volunteers, and we find a 
power law distribution, we can then try 
to predict the rate of occurrence of large 
scale shifts relating to certain well de­
fined pathological situations, for which 
good epidemiological data are available, 
and in which the gut microflora is as­
sumed to be involved in its aetiology. A 
good agreement between predicted and 
measured data would lend support to the 
thesis that the population dynamics of 
the gut microflora are involved causally. 

Which techniques have been de ­
veloped to study complex, non­
linear dynamical systems? 

A number of different tools to study 
complex, non-linear dynamical systems 
has been developed in the last decades. 
All rely on the availability of moderate 
to large amounts of computing power. 
The methods can be divided into two 
categories: (i) (time-series) analysis of 
observations, and (ii) computer simula­
tions: science on the edge between the­
ory and experiment. 

The first set of techniques attempts to 
detect the "fingerprint" of non-linear, 
deterministic behaviour in measured 
time-series. If the data are of sufficient 
quality, it is possible to distinguish 
chaotic from stochastic behaviour 
(Theiler et al., 1992). The degree of 
chaos may be determined be measuring 
Lyapunov exponents (Eckmann et al., 
1986; Parlitz 1992), or fractal dimen­
sions of the attractor (Grassberger and 
Procaccia, 1983; Brandstater and Swin­
ney, 1987). With lower grade data, 
spectral analysis, to measure the fre­
quencies of shifts of different magni­
tudes can be performed, to see whether 
power law relationships are evident 
(e.g. Bracewell, 1986). All kinds of 
time series analysis described here do 
need larger numbers of points than are 
usually obtained in e.g. patient studies 
of the microbiology of the intestinal mi­
croflora. Some tens of sample points 
should be available per patient. This 
precludes the use of classical culturing 
for these types of analysis, for all but 
the wealthiest researchers. 

The other set of tools consists of 
computer simulation techniques or "ex­
perimentation in silico". Computer 
simulations allow theorists to visualise 
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what should happen if their theories 
concerning complex systems are cor­
rect, or which parameter settings have 
the most profound influence on the 
system's behaviour. Computer simula­
tions by themselves do not tell us any­
thing about the real system, they tell us 
something about our theories concern­
ing the system. Without computer simu­
lations, theories of all but the simplest 
systems are hard to interpret in a quanti­
tative way. Especially in the case of 
complex, non-linear systems, it is vir­
tually impossible to say how the system 
will behave, given a set of experimental 
conditions. However, if quantitative 
models of each of the system's compo­
nents are available, it is possible to cre­
ate a computer program which could 
mimic the behaviour of the real system. 
By running such programs many times 
with many different settings of experi­
mental parameters, it is possible to gain 
a great deal of insight into the behaviour 
of the system. Comparison with in vivo 
and in vitro experimental data must of 
course be performed to see whether the 
behaviour of the model system is any­
thing like the real system. 

Computer models come in two dif­
ferent basic types: tactical and strategic 
(Levins, 1968). A tactical model strives 
to explain as much detail as possible of 
a specific system for prediction or con­
trol purposes. The results of simulations 
of such a model can be highly accurate, 
but are not widely applicable. By 
contrast, strategic models are more or 
less qualitative. They cannot predict the 
behaviour of a specific system in detail, 
but they can explain the kinds of 
behaviour a class of systems sharing 
certain features may show. Insight, 
rather than prediction and control is the 
ultimate goal of such models. The re­
sults of these kinds of simulations are 
not at all numerically accurate, but they 
are widely applicable. Most modelling 
in theoretical biology is of the strategic 

type (Bulmer, 1994). A number of tac­
tical models have been used within the 
field of microbiology (Jahnke et al., 
1982; Gerritse et al., 1992; de Wit et 
al., 1995), usually applying to ecosys­
tems of limited complexity. An example 
of more complex modelling is Cyber­
mouse, a model murine immune system 
(Sieburg, 1990; 1993). 

The "spatial vs. chemical detail" 
trade-off 

When modelling an ecosystem it is of 
course impossible to capture all detail. 
Tracing every single cell's interaction 
with every chemical is beyond the 
power of any computer on earth. Some 
intelligent simplifications are needed. 
When designing such a simplified 
model, the most important trade-off is 
that between the spatial resolution re­
quired and the number of (chemical or 
microbial) species in the model. Models 
can in fact be classified based on the 
spatial/species resolution ratio. 
At one end of the spectrum are those 
models which model "chemistry" in 
high detail, but do not show any spatial 
detail. Usually these models are con­
nectionist models, using complicated 
graphs (food-webs) to define the inter­
actions between various species within 
the system. Such models may be used 
for well mixed chemostats (e.g. Gerritse 
et al., 1993), and can be used to model 
complex chemistry (Bagley and Farmer, 
1992) or food webs (Lindgren and 
Nordahl, 1994). Leaving out spatial 
detail may be safe enough if the 
ecosystem is fairly homogenous, yet 
there is one caveat. In a study of gypsy 
moth population dynamics, Wilder et al. 
(1995) found that chaos occurred when 
spatial detail was omitted. If spatial de­
tail (and consequently diffusion) was 
included, highly regular travelling 
waves were seen instead. Diffusion was 
capable of damping out chaos, and 
changing it to regular behaviour. 
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Table 1: Parameters describing a bacterial metabolism and numerical values for the three "species" used (derived from Gerritse et al., 1992) 
——————————————————————————————————————————————————————————— 

Symbol Meaning Strict anaerobes Facultative anaerobes Strict aerobes Units 
——————————————————————————————————————————————————————————— 
HO2 maximum growth rate by aerobic metabolism -1.0 x 10-4 4 x 10-4 6 x 10-4 /s 

(inhibition rate if negative) 

Han maximum growth rate by anaerobic metabolism 1.0 x 10-4 0.75 x 10-4 0  /s  

Hbasal basal metabolism (minimum metabolic requirement) 1 x 10-5 1 x 10-5 1 x 10-5 /s 

KF half saturation uptake rate food concentration 2 x 10-2 2 x 10-2 2 x 10-2 mol/l 

KR,O2 half saturation respiration rate oxygen concentration 1 x 10-6 1 x 10-5 1 x 10-5 mol/l 

KT,O2 half saturation kill rate oxygen concentration* 1 x 10-6 1 x 10-5 1 x 10-5 mol/l 

κO2 maximum oxygen kill rate 1 x 10-6 0  0  /s  

αO2 efficiency factor of aerobic metabolism 1 1 1 

αan efficiency factor of anaerobic metabolism 1 1 1 

ακ fraction of oxygen killed bacteria returned as food* 0.5 1 1 

βH maximum oxygen uptake rate due to aerobic metabolism 1.10-9 - 1.10-7 1.5 x 10-4 1.5 x 10-4 /s 

βκ maximum oxygen uptake rate due to toxic effect on 1.10-9 - 1.10-7 0.0 0.0 /s 

anaerobes or microaerophiles 
——————————————————————————————————————————————————————————— 
*: Value has no influence on outcome if oxygen kill rate and uptake rate are zero, but causes divide by zero errors if set to zero itself. 
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On the other side of the scale are 
cellular automata: (usually rectangular) 
grids of simple "chemostats" of limited 
complexity, each interacting only with 
its nearest neighbours through simple 
rules. Such systems can show high 
spatial detail, at the expense of biochem­
ical realism. Nonetheless, as extremely 
abstract systems they lend themselves to 
strategic modelling of spatial self-organ­
isation processes, such as can occur in 
reaction diffusion systems (Markus and 
Hess, 1990). As microbiological sys­
tems can often be seen as reaction dif­
fusion systems (e.g. Blackburn and 
Blackburn, 1993), it is reasonable to 
assume that some spatial detail must be 
included. 

Many biological models are some­
where in between the two extremes, 
e.g. showing one (vertical) spatial di­

mension for microbial mat communities 
yet show a great deal of biochemical 
realism (de Wit et al., 1995). De Wit et 
al. (1995) could predict the vertical spa­
tial distributions and diurnal cycles of 
coexisting cyanobacteria, purple sulphur 
bacteria and chemotrophic sulphur 
bacteria in a microbial mat community, 
based on detailed knowledge of 
metabolisms, light absorption, division 
rates, etc. The computations could be 
carried out on a simple personal com­
puter. The success of such work 
strongly suggests that at least a strategic 
model could be made for the intestinal 
microflora. With considerably more 
computing power, and considerable in­
put from in vitro measurements of mi­
crobial physiology, a tactical model 
could possibly be made. 

AN EXPERIMENT IN SILICO
 

A computer simulation has been run, 
using a program developed as a pilot 
study within the ISGNAS research pro-
gram. A full description of the computer 
program, its capabilities and the simula­
tions run on it is in preparation. The 
model intestine consists of a 6 m long 
axisymmetric tube of varying diameter. 
The first 4.98 m are the small intestine, 
with a radius of 1 cm; the next 18 cm 
are the "caecum" (radius 5 cm), fol­
lowed by a "colon" of 84 cm long and 3 
cm radius. The lengths and radii may be 
varied at will. The intestine is subdi­
vided axially into 100 sections and ra­
dially into l0 concentric shells. Each of 
the 1000 volume elements may be con­
sidered a separate "chemostat" coupled 
to its neighbours by transport mecha­
nisms. Continuous laminar flow and 
diffusion are the transport mechanisms 
modelled to date. Extensions for peri­
staltic motion may be included later. 
Apart from up to 6 "species of bacteria", 

2 "chemical substances" are included in 
the model: food and oxygen. Though I 
will use the phrase species, each type of 
bacterium represents a whole category 
of bacteria, all of which share an aerobic 
or anaerobic metabolism. This means 
that each "species" can metabolise a far 
wider set of food substrates (lumped 
together as one substance "food"), than 
a single species in reality. Within each 
category, mutualisms, such as the use 
of metabolites of the one species as sub­
strate by others means that the effective 
yield of biomass per unit of substrate 
should be higher than in a true single 
species. 

The metabolism of each species was 
modelled using Monod equations with 
modifications for (i) a basal metabolism, 
and (ii) mutual hindrance at high 
population densities. The model meta­
bolism of each species is determined by 
12 parameters, the meanings and values 
of which are summarised in Table l. 
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Figure 3: Colonization process in a di-associated sterile intestine modelled by computer simula­
tion. Equal numbers of two species of bacteria (one strict and one facultative anaerobe) are fed into 
the sterile intestine, which contains an initial oxygen concentration of 0.1 mmol/l. Initially, the 
facultatives colonise. Later, as oxygen levels drop, the strict anaerobes outcompete the facultatives. 

The model metabolism is a slight varia­
tion of that used by Gerritse et al. 
(1990). All concentrations are given in 
mol/l: food and all bacteria in moles of 
organic carbon, oxygen simply in moles 
of molecular oxygen (O2). To convert to 
numbers of bacteria, it was assumed 
that the volume of a single bacterium 
was 10-15 l (i.e. a maximum of 1012/g), 
and that they contained roughly 10% 
w/w of organic C. This yields a con­
version factor from mol/l to bacteria/g of 
about 1.2x1011. 

Using the above model, experiments 
were done to simulate colonisation in a 
sterile intestine. One or two species of 
bacteria, selected from three available 
types (strict aerobe, facultative anaerobe 
and strict anaerobe), were introduced 
into a sterile intestine, in which the 
oxygen concentration of the lumen was 
in equilibrium with the walls (0.1 
mmol/l). The input of food, oxygen, 
and bacteria was in block waves with a 
40% duty cycle. Food concentration at 
maximum was 7 mol/l, oxygen concen­

tration 0.l mmol/l, and in most experi­
ments the food inflow contained a 
maximum of 1.2x103 bacteria/g of each 
species. Though this may be a bit high, 
runs with only 12 bacteria/g showed 
virtually identical results, so evidently 
this parameter is relatively unimportant 
in the initial colonisation phase. 

Figure 3 and Table 2 summarise the 
results of the simulations. When strict 
anaerobes were introduced simultane­
ously with either facultative anaerobes 
or aerobes, the latter colonised within 1 
day, reaching a maximum at day 4. Af­
ter this, they were replaced by the 
anaerobes, which only appeared in any 
numbers at day 3. After 5 to 6 days a 
stable equilibrium was reached with 
strict anaerobes outnumbering faculta­
tives or aerobes by 2.4-2.7 10log steps. 
Small oscillations caused by the periodic 
input of food remained visible. Once 
stabilised, the population did not change 
if the influx of bacteria from the 
"stomach" reduced to zero, thus they 
had colonised the lumen. 
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Table 2: Mean numbers of bacteria per gram at equilibrium, 12 days after colonization, 
for a mono- or di-associated model intestine 

——————————————————————————————————————— 
Small intestine (10log) Large intestine (10log) 

Mono-associated with: 
strict anaerobe* 4.42 x 102 (2.65) 6.77 x 102 (2.83) 
strict aerobe 1.04 x 108 (8.02) 1.10 x 109 (9.04) 
facultativc anaerobe 7.73 x 108 (8.86) 2.22 x 1011 (11.35) 

Di-associated with: 
strict anaerobe + 1.65 x 109 (9.22) 2.8 x 1011 (11.45) 
strict aerobe 1.02 x 108 (8.01) 4.42 x 108 (8.65) 

strict anacrobe + 1.66 x 109 (9.22) 2.8 x 1011 (11.45) 
facultative aerobe 9.871 x 107 (7.99) 9.89 x 108 (8.99) 

——————————————————————————————————————— 
*: Does not represent colonisation, as the maximum input density of bacteria was 1.2 x 103/g 

(mean 4.8 x 102/g), and when the input density was reduced to zero, all anaerobes were washed 
out of the intestine with 3-4 days. 

Facultative anaerobes by themselves 
could colonise in high numbers in the 
absence of strict anaerobes 
(2.2x1011/g). Strict aerobes could 
colonise by themselves, but only in 
modest numbers compared to faculta­
tives (l.lx109/g). By contrast, none of 
the strict anaerobes tested could colonise 
in the absence of bacteria with an 
aerobic metabolic ability. 

A second experiment started with the 
stable mixed populations at t=12 days 
found with the first experiment. At that 
point, the aerobic fraction of the mi­
croflora was eliminated and the influx of 
aerobes halted, as a (crude) simulation 
of selective decontamination of the 
digestive tract. Depending on the oxy­
gen uptake rate of the anaerobes (both β­
parameters in Table 1), the populations 
could remain stable, even in the total 
absence of aerobes. Only if the in­
hibition of growth and destruction of 
bacteria required less than 1.2x10-8 mol 
O2 per mol C bacterial biomass did the 
population become unstable and die out 
due to the increased oxygen concentra­
tion. The extreme sensitivity to the value 
of both β-parameters is shown in Figure 

4. When both are set at 1.2x10-8, the 
flora remains stable, but at 1.1x10-8  a 
steady decline does set in after 4 or 5 
days, and at 1.0x10-8 the decline starts 2 
days earlier. 

To test the stability of the ecosystem 
to perturbations around this critical 
point, the supply of food was altered in 
two ways: (i) above the stability 
threshold the period was increased 
while retaining the same total food 
supply (i.e. a few large amounts of food 
in stead of many small amounts), and 
(ii) below the stability threshold in­
creasing the production of mucus. 

Figure 5a shows the results of the 
first perturbation. As the period between 
meals increases, the oscillations in the 
population density increase, which is 
expected many types of damping 
systems. When food is supplied only 
once a day, the oscillations become so 
large that the population becomes 
unstable and dies out. Figure 5b shows 
the results of the second experiment. 
With increasing food supply, the 
survival increases, though in this exper­
iment no permanent survival was ob­
served. 
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Figure 4: The survival of strict anaerobes when all facultative anaerobes and aerobes have been 
removed: Depending on the oxygen uptake parameters β8βH8βκ (Table 1) the bacteria survive or 
die out. 

DISCUSSION 

In my view, no "leap of faith" is 
needed to describe the intestinal mi­
croflora and the immune system as 
complex, non-linear dynamical systems. 
In fact, it is merely a generalisation of 
the modelling work of, e.g. Freter et al. 
(1983). Once this is accepted, it is a 
logical step to use non-linear time series 
analysis techniques and computer 
simulation as tools to study these 
systems. Computer simulation is 
probably the only way to verify that 
certain models work, i.e. explain 
observed data, in any system with more 
than 3 interacting objects when it is not 
in an equilibrium state. Computer simu­
lation can distinguish the essential from 
the accidental parameters. Used prop­
erly non-linear dynamics may tell us 
both how to interpret our data within the 
framework of a complex model (i.e. a 
lot of simple interacting objects), and 
which parameters should be observed to 
distinguish between competing models. 

What might we learn from non­
linear dynamics in the intestinal 
microflora? 

Here we enter the realm of specula­
tion. Leaving aside a number of "ifs", 
computer simulation and time-series 
analysis might give us insight into the 
following issues: 
- Under which conditions does the mi­

croflora become more or less self­
regulating? 

- If we extrapolate the power law spec­
trum of the population dynamics (if it 
exists), could we explain the occur­
rence of certain intestinal disorders as 
a consequence of this power law? If 
so, this could lead to preventive ther­
apy: can we modulate the flora to 
change the power of the power law? 

- What is the link between the power or 
fractal dimension of the time series 
and the number of species in the flora? 
Does this conform to the conventional 
notion of some 400 species? 
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Figure 5: Modulating the survival of strict anaerobes when all facultative anaerobes and aerobes 
have been removed: (A) increasing the period P of the food supply cycle for the survivors in figure 
5 (β=1.2x108) causes increasing oscillations which destabilise the population; (B) increasing food 
supply through mucus production increases survival for bacteria with β=1.1x108. 

- how does all this influence colonisa- to survive in the intestines? 
tion resistance, i.e. can we predict - How do the mechanics (intestinal 
colonisation resistance from popula- motility, lumen viscosity, etc.) influ­
tion dynamics? ence the spatial and species distribu­

- What role do bacteriophages play? tion?
 
- What attributes does a bacterium need - What role does the immune system
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(e.g., modelled using Cybermouse) 
play in modulating the flora? 

These issues (and probably a lot more) 
can of course not be resolved by com­
puter modelling work alone, but should 
be addressed by a concerted effort, in­
corporating the development of new 
theories and more accurate methods of 
observation. High quality data will be 
essential for the non-linear analysis ap­
proaches to work. The problems with 
cultural counts can however be sur­
mounted with a number of techniques, 
such as measurement of microflora as­
sociated characteristics (MACs) 
(Midtvedt, 1985) and digital image 
analysis (Meijer et al., 1991; Wilkinson 
et al., 1994) especially in combination 
with 16S rRNA targeted fluorescence in 
situ hybridisation (Langendijk et al., 
1995) and measurements of metabolic 
activity (Nwoguh et al., 1995; Gribbon 
and Barer, 1995). Such techniques 
promise to deliver both the data quality 
and achievable sampling rates needed 
for the kind of analysis envisaged. 

What has been learned from the 
pilot study? 

First of all it should be stated that no 
true chaos was observed in any of the 
simulations. Secondly, a number of 
things may be learned from the omis­
sions in the model. Adherence sites on 
the epithelium were not modelled, yet in 
the absence of a true mucosal flora at­
tached to the wall, a luminal flora could 
become perfectly stable. Evidently, 
bacteria can colonise the lumen without 
colonising the mucosa. Without an im­
mune system reasonable ratios of aer­
obes to anaerobes were found. Thus, it 
is reasonable to assume that the immune 
system does not in fact regulate this ra­
tio, but that the reduction of oxygen by 
aerobes creates an anoxic environment, 
in which they are outcompeted for food 
by strict anaerobes. Far from being a 
new idea, this has already been sug­

gested by (e.g.) Meynell (1963), 
Schaedler et al. (1965) and Schaedler 
(1973) on the basis of experimental 
data. However, none of these authors 
could give a estimate of the magnitude 
of the effect on theoretical grounds. 

Apart from the final numbers and ra­
tios, sequence of the colonisation in 
Figure 3 is very reminiscent of the 
colonisation of the gut of germ free and 
new-born mice (Schaedler et al., 1965; 
Schaedler 1973), where the "normal" 
flora (fusiforms, Bacteroides, etc.) are 
preceded by the coliform facultatives. 
For about 2 days, the facultatives domi­
nate the strict anaerobes, after which the 
anaerobes outcompete the coliforms. 
The difference between these observa­
tions and the simulation lies in the lac­
tobacilli and lactococci, which are the 
first to appear in new-born mice. How­
ever, many lactobacilli grow readily at 
high oxygen levels (even in air, Schut, 
personal communication), and do not 
lower redox potential (Eh) (Meynell, 
1963). Furthermore, they are not 
thought to enter into direct substrate 
competition with the coliforms, 
fusiforms, Bacteroides, etc. (Schaedler 
et al., 1965). Thus, they may not inter­
fere with the type of interaction mod­
elled in this experiment. 

Selective decontamination could lead 
to a destruction of highly oxygen sensi­
tive anaerobes, even when totally resis­
tant to the antibiotics used. This effect 
should be larger in patients with reduced 
mucus production due to epithelial 
damage than in healthy volunteers. On 
the other hand, the oxygen uptake by 
anaerobes need not be unrealistically 
high (Gerritse et al., 1992) to retain a 
perfectly stable anaerobic flora when all 
aerobes have been removed. Even in 
these cases it is likely that the anaerobes 
become more sensitive to extra stress 
factors, such as a residual antibiotic re­
sistance. 

Since the main supply of oxygen in 
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the large intestine is the diffusion 
through the mucosa, oxygen availability 
should not change with food supply, to 
a first order approximation. Therefore, 
if the host is starved or if little or no fi­
bre is contained in the diet, a shift in 
ecological balance towards a more aer­
obic flora is expected. This may suggest 
that an increased risk of intestinal over­
growth by aerobic pathogens during 
malnutrition can exist, even before the 
immune system is affected. Similarly, if 
the mucosa is damaged the diffusion of 
oxygen may increase, causing an in­
crease in the numbers of aerobes, which 
in turn may result in more damage. This 
type of vicious circle may be considered 
an attractor in dynamical terms. Viewed 
in this way, an aerobic infection may 
contain a form of self organisation, the 
bacteria creating the conditions for their 
own success. Furthermore, if the ep­
ithelium is damaged by irradiation or 

chemotherapy, both the production of 
mucus and the oxygen uptake by the 
epithelium may be impaired. Both ef­
fects should contribute to an increase in 
aerobic bacteria. Both in man and in 
mice such an increase has been ob­
served after irradiation (van der Waaij, 
1978). 

Concluding remarks 
More work, in vivo, in vitro and in 

silico, is needed to show whether the 
tentative conclusions drawn from this 
pilot study hold up. A more complicated 
model, taking more microbial and 
chemical species into account, and the 
inclusion of receptors on the intestinal 
epithelium, an immune system, etc., are 
needed for the in silico part of the work. 
Simultaneously, the data analysis tech­
niques reviewed here should be used to 
examine data from in vivo measure­
ments. 
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